
Lecture 9  Internal Validity



Objectives
§ Internal Validity
§ Threats to Internal Validity
§ Causality
§ Bayesian Networks



Internal validity

The extent to which the hypothesized 
relationship between 2 or more variables is 
supported by evidence in a given study.



Construct validity refers to the degree to which inferences 
can legitimately be made from your study to the theoretical 
constructs on which those operationalizations were based.

Internal Validity is the approximate truth about inferences 
regarding cause-effect or causal relationships.

External Validity: Assuming that there is a causal relationship 
in this study between the constructs of the cause and the effect, 
can we generalize this effect to other persons, places or times?

Validity

Statistical validity has to do with basing conclusions on 
proper use of statistics.



Internal validity



External Validity



Statistical Validity

H0 (null hypothesis) true
H1 (alternative hypothesis) false

H0 (null hypothesis) false
H1 (alternative hypothesis) True

1- � (e.g., .95) 
THE CONFIDENCE LEVEL
The probability we say there 

is no relationship when there is not

� (e.g., .05)
Type I Error
The probability we say there 
is a relationship when there is not

1- � (e.g., 80)
THE POWER

The probability we say there 
is a relationship when there is one

We accept H0
We reject H1

We reject H0
We accept H1

In Reality
We Conclude

� (e.g., 20)
Type II Error
The probability we say there 
is no relationship when there is one



Construct 
Validity



Threats to construct validity

Threats to statistical validity

Threats to internal validity

Threats to external validity

Although it is claimed that the measured variables and the experimental 
manipulations relate to the conceptual variables of interests, they actually 
may not.

Conclusions regarding the research may be incorrect because a Type 1 or 
Type 2 error was made.

Although it is claimed that the independent variable caused change in the 
dependent variable, the changes in the dependent variable may have actually 
been caused by a confounding variable.

Although claimed that the results are more general, the observed effects may 
actually only be found under limited conditions or for specific groups of people.  

Threats to the Validity of Research



Challenges to Internal Validity

a. History
b. Maturation
c. Experimental mortality
d. Instrumentation
e. Testing
f.  Interactions with selection



History

Any events that occur during the course of the
experiment which might effect outcome.

Example: An important event not related to 
the experiment affects the measurement 
of pre and post-test.



Maturation

Changes in the subjects over the course of the
experiment.

Example: Age, experience, physical 
development of participants that leads to 
increase in knowledge and understanding of 
the world or behavior which can affect 
program results.



Experimental Mortality

Dropouts from the experiment; especially when
the dropouts systematically bias the comparisons

Example: If your include pretest subsequent dropouts 
in the pretest and not in the posttest you will bias the 
test based on the characteristics of dropouts. And, 
you won't necessarily solve this problem by 
comparing pre-post averages for only those who 
stayed in the study. This subsample would certainly 
not be representative even of the original entire 
sample



Instrumentation

Any way in which the instrument used for
observation or collecting data changes from the
pre-test to the post-test.

Example: Test, Interview, Measurement 
Technique or Instrument.



Regression Threat

A regression threat, also known as a 
"regression artifact" or "regression to the  
mean" is a statistical phenomenon that 
occurs whenever you have a nonrandom 
sample from a population and two 
measures that are imperfectly correlated. 



Regression Threat

The highest and lowest scorers will regress toward the mean at a higher rate than those 
who scored close to the mean. There will be a higher degree of regression for unreliable 
measures than for more reliable ones.



• The degree of asymmetry (i.e., how far 
from the overall mean of the first measure 
the selected group's mean is)

• The correlation between the two 
measures

The absolute amount of regression to 
the mean depends on two factors:



Testing

The observations gathered may influence the way 
subjects behave, thus effecting the outcome.

Example: having had the experience of taking the 
GRE once, without any additional preparation, you 
are more likely to improve your score on a re-take.



Interactions with Selection

When there is a relationship between the treatment
and the selection of subjects, this causes a
systematic bias which affects causal inference

Example: A selection threat is any factor other than 
the program that leads to posttest differences between 
groups. These include: history,  maturation, test, 
instrumentation, mortality, and regression.



SIMPSON’S PARADOX

Any statistical relationship between two variables 
may be reversed by including additional factors in 
the analysis.



SIMPSON’S PARADOX
Example by Judea Pearl

The classical case demonstrating Simpson's paradox 
took place in 1975, when UC Berkeley was 
investigated for sex bias in graduate admission. In 
this study, overall data showed a higher rate of 
admission among male applicants, but, broken down 
by departments, data showed a slight bias in favor of 
admitting female applicants. The explanation is 
simple: female applicants tended to apply to more 
competitive departments than males, and in these 
departments, the rate of admission was low for both 
males and females. .



FISHNET (JUDEA PEARL)



Which factors SHOULD be included in 
the analysis?

All conclusions are extremely sensitive to which variables we 
choose to hold constant when we are comparing, and that is 
why the adjustment problem is so critical in the analysis of 
observational studies.

According to Judea Pearl, such factors can now be identified 
by simple graphical means.



The basic foundation of probability theory follows from the following intuitive 
definition of conditional probability. 

P(A,B) = P(A|B)P(B)

In this definition events A and B are simultaneous an have no (explicit) 
temporal order we can write 

P(A,B) = P(B,A) = P(B|A)P(A)

This leads us to a common form of Bayes Theory, the equation: 

P(A) = P(B|A)P(B)/P(A|B)   (marginalization)

which allows us to compute the probability of one event in terms of 
observations of another and knowledge of joint distributions. 

Bayes Theorem



Often one is interested in particular conditional probability and discovers that
The reverse conditional probabilities are more easily obtained.

Example: One is interested in the P(disease | symptom), but typically 
P (symptom | disease) is better known. 

Causality Example: One is interested in the P(cause | effect), but typically 
P (effect | cause) is better known. 

Use of Bayes Rule



The heart of Bayesian inference lies in the inversion  formula which
States that the belief we accord to a hypothesis H upon obtaining 
Evidence e can be comnputed by multiplying our previous belief P(H) 
by the likelhood P(e H) that e will materialize if H is true. 

P(H | e) = P(e | H) P(H) / P(e)

P(H | e) = posterior probability

P(H) = prior probability

From the definition of condition probability 

P(A | B) = P(A,B) / P(B)

P(B | A) = P(A,B) / P(A)

Bayes Theorem



Bayesian networks

Graphs in probabilistic form
§ To provide convenient means of espressing 

substantive assumptions
§ To facilitate economical representation of 

joint probability functions, and
§ To facilitate efficient inferences from 

observation

Bayesian networks provide a language for qualitatively representing the conditional 
independence properties of a distribution. This allows a natural and compact 
representation of the distribution, eases knowledge acquisition, and supports 
effective inference algorithms.


